Remarks on a totally real submanifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures

In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...

متن کامل

A Remark on Approximation on Totally Real Sets

We give a new proof of a theorem on approximation of continuous functions on totally real sets.

متن کامل

On totally real spheres in complex space

Let M ,N be two totally real and real analytic submanifolds in Cn . We say that M and N are biholomorphically equivalent if there is a biholomorphic mapping F defined in a neighborhood of M such that F (M ) = N . As a standard fact of complexification, one knows that all totally real and real analytic embeddings of M in C n are biholomorphically equivalent if M is of maximal dimension n . Howev...

متن کامل

Some remarks about Cauchy integrals and totally real surfaces in C m

Of course 〈v, v〉 is the same as |v|, the square of the standard Euclidean length of v. Define (v, w) to be the real part of 〈v, w〉. This is a real inner product on C , which is real linear in both v and w, symmetric in v and w, and such that (v, v) is also equal to |v|. This is the same as the standard real inner product on C ≈ R. Now define [v, w] to be the imaginary part of 〈v, w〉. This is a ...

متن کامل

Some remarks about Cauchy integrals and totally real surfaces in C m Stephen Semmes

Of course 〈v, v〉 is the same as |v|, the square of the standard Euclidean length of v. Define (v, w) to be the real part of 〈v, w〉. This is a real inner product on C , which is real linear in both v and w, symmetric in v and w, and such that (v, v) is also equal to |v|. This is the same as the standard real inner product on C ≈ R. Now define [v, w] to be the imaginary part of 〈v, w〉. This is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1975

ISSN: 0386-2194

DOI: 10.3792/pja/1195518720